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Abstract—Modern aerospace systems are often subject to 
multiple modes of failure. 1 2 Unless the failure modes have 
radically different statistical characteristics, it can be very 
difficult to recognize in failure data that multiple failure 
modes are in play. When using graphical inferential 
methods for reliability analysis, the potential for multiple 
failure modes may be suggested by a bent regression line. 
Subsequent analysis of these modes is usually performed by 
segregating the data to separate sets to be processed 
separately for each failure mode, usually segregated about 
the bend in the regression line. This data segregation 
process raises a number of questions, especially when 
numerous survivor data are to be processed. The primary 
issue with a survivor datum in this case is that it reflects that 
the system has not yet failed, in any mode. Assigning a 
survivor datum to any particular failure mode data set for 
separate processing appears completely arbitrary, and may 
produce spurious results that may then result in unnecessary 
costs or unacceptable risks in preventative maintenance. 

The US Coast Guard encountered such a dilemma with 
failure data for the AC generator subsystem for the HU-25 
aircraft. Their data consisted of 45 failures and 41 survivors. 
When processed using the graphical inferential method 
provided by a commercially available reliability analysis 
tool, the results presented a bent regression line suggesting 
that two failure modes may be in play. Further analysis of 
these failure modes, via segregation of both the failure and 
survivor data at the bend and reprocessing of the segregated 
data sets, was neither convincing nor comforting to the US 
Coast Guard.  

This report investigates the use of a mixture model to 
represent potential multiple failure modes. A method is 
developed to use this model using a conditional inferential 
approach and is used to detect and confirm multiple failure 
modes, without any failure and survivor data segregation. 
This model and method are validated using simulated data 
sets generated with a variety of dual failure modes, both 
easy and difficult to discern visually in the data, and 
demonstrates that multiple failure modes can be reliably 
detected when the failure modes are represented in the data 
by proportions between 25 and 75%, even when the 

multiplicity of the modes is not visually obvious in the data. 
The HU-25 AC generator data are then processed using this 
method and the results demonstrate that the suspected two 
distinct failure modes are indeed in play.  

 
1 978-1-4244-7351-9/11/$26.00 ©2011 IEEE. 
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The model and method presented in this report can be used 
for any aerospace system which from the data is suspected 
of having multiple modes of failure. 
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1. INTRODUCTION 
Aerospace systems are generally designed and built to meet 
very stringent performance and reliability requirements. 
Considering the complexity of modern aerospace systems, it 
is quite often very difficult to ascertain why a particular 
system or subsystem might fail, or if multiple causes for 
failure are present in sets of failure data. Complicating 
matters, for these systems that might be suspected of failing 
for multiple reasons, due to the stringent reliability 
requirements to which they were designed and built, 
significant numbers of survivor or suspension data may be 
available as well. A survivor datum is where the system has 
been observed to perform for some period without failing. 
Survivor data provide very valuable information regarding 
the reliability of a system, yet no information that can relate 
to any particular failure mechanism or mode. In reliability 
and risk analyses, survivor data may actually dominate data 
sets [1]. 

There are a number of software tools available to perform 
reliability analysis. Most focus on use of the Weibull 
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distribution model and use classical graphical inferential 
methods to infer point estimates of the parameters of the 
Weibull model. This method is referred to as Median Rank 
Regression, and is capable of incorporating survivor data in 
the statistical inference. These tools often highlight the 
potential for multiple modes of failure in the data when a 
bent regression line best fits the data. The typical procedure 
used when a bent regression line presents is to segregate the 
data at the bend, and to reprocess the segregated data sets 
separately to infer the parameters of the Weibull model for 
each failure mode. This data segregation and reprocess 
procedure raises some questions, particularly when there are 
appreciable numbers of survivor data. Recall for a survivor 
datum, the system has not failed for any reason, or as a 
result of any failure mode. How then is any particular 
survivor datum assigned to any set of failure data as a valid 
part of that set? How would assignment of a particular 
survivor datum affect any of the failure modes inferences? 

The US Coast Guard used such a commercially available 
reliability analysis tool that uses graphical inferential 
methods [2] for a set of failure and survivor data for the AC 
generator used in the HU-25 Guardian aircraft. Figure 1 
shows this aircraft. 

Figure 1 – The US Coast Guard HU-25 Guardian 
aircraft AC generator was suspected of exhibiting 

multiple modes of failure. 

The AC generator for the HU-25 Guardian was 
experiencing failures that were unexpected. The failure data 
collected for the AC generator consisted of 45 failures (four 
at initial start), and 41 survivors. When these data were 
processed (omitting the zero time failures) using a 
commercially available reliability analysis software tool, the 
results presented a bent regression line, suggesting that 
multiple failure modes might be in play. Figure 2 is the plot 
produced by this tool. 

Figure 2 – Processing of the failure and survivor data 
for the HU-25 AC generator using a commercially 

available reliability analysis tool suggested multiple 
modes of failure via the bent regression line. 

The plot in figure 2 reveals many features. First, the four 
zero time failures were not included in the data set since 
graphical inferential methods cannot use them. In the lower 
left corner, the inferred point estimates of the Weibull 
parameters for the entire data set indicated that the failure 
mode was infant mortality (shape parameter β = 0.62). A 
bent regression line is presented, suggesting that multiple 
failure modes may exist in the data. 

The US Coast Guard analysts went on to segregate the 
failure and survivor data at various points in time and 
reprocess the segregated sets of data separately. The results 
of each segregation and reprocessing were not particularly 
comforting nor convincing to the analysts. Graphical 
inferences from some segregation sets of data confirmed the 
infant mortality mode (inferred point estimate β values 
ranging from 0.47 to 0.78) as inferred from the entire data 
set, and others indicated old age failure modes (inferred 
point estimate β values ranging from 4.67 to β > 11). That 
two failure modes seemed to be confirmed by the data 
segregation and reprocessing was not in question. The 
failure modes inferred, and the specific point estimate 
values of the shape parameter β, however, do play a 
significant role in investigation of the cause of the failures 
and how to develop a cost effective preventative 
maintenance schedule to assure aircraft availability.  

The author of this report had previously worked with the 
US Coast Guard analysts working with this problem on 
finding the optimal cost preventative maintenance interval 
for a cooling turbine for the C130 aircraft [3]. The analysts 
thus presented these graphical inferential method results to 
the author of this report for comment. The author of this 
report suggested that perhaps a different approach might 
yield additional insights. 
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This different approach started with a mixture of two 
Weibull distribution models. If there were truly two modes 
of failure in play in the HU-25 AC generator data set, then 
some of these data should have come from one, and some 
from the other. A conditional inferential method was 
developed to infer the joint distribution of parameters from 
both Weibull models along with the mixture parameter. This 
method employed models that reflect objectivity for all 
parameters, for both Weibull models’ parameters and for 
the mixture ratio parameter, to avoid any influences 
favoring any particular failure mode, or that multiple modes 
exist.  

Because of the analytical complexity of this mixture model 
formulation, coupled with the complexity of the conditional 
inferential methods employed, numerical methods (Markov 
Chain Monte Carlo) were required to obtain samples of the 
joint distributions of all parameters. From the marginal and 
paired joint distributions of these samples, convincing 
arguments can be developed as to whether multiple modes 
of failure exist in the data or not, as well as characteristics 
of those modes. 

Before using the mixture model and conditional inferential 
approach to investigate whether multiple failure modes exist 
in the HU-25 data, investigatory sets of simulated failure 
and survivor data were developed for various mixture ratios, 
for distinct failure modes (one infant mortality β = 0.7, the 
other early wearout β = 3.7). These data were processed to 
validate that the method could indeed detect and confirm 
that multiple modes of failure were in play in the data for 
mixture ratios between 25% and 75%, and could not detect 
nor confirm multiple modes when the mixture ratios were 
more exaggerated. 

The AC generator data for the HU-25 aircraft were then 
processed using this mixture model and conditional 
inferential and numerical methods, and results were 
obtained. This approach inferred that two failure modes did 
indeed exist in the AC generator data, and that the mixture 
ratio was most likely ~ 41%. One failure mode was most 
likely infant mortality with β ~ 0.3, and that the other was 
most likely early wearout with β ~ 2. These inferred results 
were dramatically different from those obtained using the 
graphical inferential methods, with any segregation sets of 
data. Examination of the parameter samplings was 
comforting and convincing. 

This report presents the development of the mixture model 
and conditional inferential and numerical methods that may 
be used to investigate multiple failure modes in sets of data 
that include failures and survivors. It presents preliminary 
validation demonstrations using a suitable set of simulated 
data that the method can reliably detect and confirm 
multiple failure modes in sets of data that include failures 
and survivors, for distinctly different failure modes with 
mixture proportions in the data that would either present a 
bent regression line using a graphical inferential method, or 

perhaps present visible multiple modes in scatterplots of the 
data.  

This report then presents the results from processing the 
HU-25 AC generator data using the mixture model and 
conditional inferential method. Two distinct modes were 
found using this model and method, that were quite 
different from those obtained from any data segregations 
and processing using the commercially available reliability 
tool. 

2. METHOD  
Development of the method to detect and confirm multiple 
failure modes for failure data that include numerous 
survivor data begins with development of a mixture model, 
and proceeds with development of a conditional inferential 
method to process the data. Due to the complexity of both 
the mixture model and conditional inferential method, 
numerical methods must be employed to obtain samplings 
of the joint distribution model of all parameters. 

Mixture Model Development 

Equation (1) provides the general Weibull density function, 
which has a location parameter t1 ≥ 0, a scale parameter 
η > 0, and a shape parameter β > 0. 
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The Weibull model is a very general model for reliability 
related problems in that the parameters all have physical 
meanings. This is not the case for many probability 
distribution models. The location parameter t1 represents the 
time before which failures cannot occur, and is called the 
failure-free time. The scale parameter η is the time at which 
63.2% of all failures will have occurred, and is called the 
critical life. The shape parameter β is an indicator of failure 
mode. Values of β < 1 indicate an infant mortality failure 
mode. Values of β = 1 indicate a useful life failure mode. 
Values 1 < β < 4 indicate an early wearout failure mode. 
And, values of β > 4 indicate an old age failure mode. 
Depending on the values of these parameters, the Weibull 
model can represent just about any uni-modal, one-sided 
distribution shape for failures imaginable, with skews to 
either left or right. 

An important aside relative to this density formulation: 
Weibull’s original paper [4] published in September 1951 
provided a distribution function that would produce the 
density function in equation (2).  
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In discussions of Weibull’s paper [5] published in June 
1952, Weibull noted that his distribution function as 
originally published was incorrect by stating that the 
“…parentheses are an awkward misprint.” Correction of 
this misprint produces the density function in equation (1).  

The significance of this typographical error is profound. 
First, equation (2) cannot be reparameterized to produce 
equation (1) without comingling the parameters; the density 
function in equation (2) is fundamentally flawed since 
neither λ nor α can be classed as proper location, scale, or 
shape parameters. Second, textbooks [6] [7] exist that use 
the incorrect density function in equation (2) for the 
Weibull model. And, third, there are statistical software 
packages and tools [8] [9] that use the incorrect density 
function in equation (2) for the Weibull model. The caveat 
for the reader of this report is that whenever encountering 
any work using the Weibull model, and when considering 
any software package or tool, it is imperative to verify that 
the implementation of the Weibull model uses the proper 
form expressible as equation (1). The results obtained in any 
analytical work or through use of a software package that 
uses a form expressible as equation (2) may be pathological. 

For the work presented in this report, the location parameter 
t1 in equation (1) is set to zero. There exists no reason to 
believe that any HU-25 AC generator could not fail the 
instant operation begins. 

A mixture model to represent the uncertainty for failures to 
be observed where two failure modes exist can be 
developed by using two Weibull models and introducing a 
new parameter to represent the mixture proportion. One of 
the Weibull models will have parameters ηa and βa, and the 
other will have ηb, and βb. The mixture proportion 
parameter (proportion of failures from the Weibull model 
with parameters ηa and βa) will be represented by γ. 
Equation 3 presents this mixture model where 
Weiba(tf |ηa, βa ) and Weibb(tf |ηa, βa ) are the two Weibull 
distribution models.  

 

(
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Conditional Inferential Approach 

With conditional inferential methods, the joint probability 
density model for the parameters of the mixture model is 
developed based solely on the data. With this joint density, 
it is possible to compute any probability that might be 
useful. To develop the joint density of γ, ηa, βa, ηb, and βb 
given the data, Bayes’ Law [10] is employed per equation 
(4). 
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Selection of the prior model for some problems can pose 
some difficulty. Some decision makers feel that using a 
priori knowledge of the parameters somehow prejudices the 
results, casting the pall of a rigged decision subject to 
second-guessing. Beyond that, for many uncertainty models 
that might be selected for the data for various problems, the 
parameters have no useful physical meaning, and thus no 
reason exists to have any a priori knowledge of them. To 
address both of these difficulties, it is possible to use a prior 
density model that imparts no a priori knowledge of the 
parameters. This is called using a noninformative or 
ignorance prior [11]. Use of ignorance priors establishes a 
basis of maximum objectivity for the decision, and 
alleviates the difficulty of dealing with any second-
guessing. The joint prior density model is generally 
structured such that the parameters are independent. Using 
Weibull models, because η and β are scale and shape 
parameters respectively, Jeffrey’s priors [12] are very 
suitable as the ignorance priors for ηa, βa, ηb, and βb and 
are presented in equations (5).  
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The mixture parameter γ is a simple Bernoulli model, 
having a value [0,1]. The ignorance prior for a parameter 
with a Bernoulli model is a Beta model with both shape 
parameters set to ½, and is presented in equation 6 . 
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Now, given as data Nf failures and Ns survivors (times of 
good inspections or when some other unrelated failure 
occurred), the posterior density model is formed in equation 
(7) using the mixture model from equation (4) with tfi being 
the time of the ith failure, and tsj being the time of the jth 
survivor. 
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In equation (7), the first term to the right of the proportion 
in brackets ([⋅]) is the likelihood for the failure data, the 
second term in brackets ([⋅]) is the likelihood for the 
survivor data, and the two remaining terms are the Jeffrey’s 
priors for ηa, βa, ηb, βb, and γ respectively. One very nice 
feature of conditional inferential methods apparent in 
equation (7) is that survivor data can be used directly via the 
likelihood [13]. Observed times at which a subsystem in 
service has not failed comprise very important information 
that should not be neglected in the posterior or in the 
decision. For some problems, the number of survivor data 
may exceed that for failure data, and there may be only 
survivor data and no failure data at all. Conditional 
inferential methods provide solutions for these data sets; 
such solutions are not possible using classical methods 
without employing assumptions that may be questionable.  

Numerical Methods 

The uncertainty distribution in equation (7) is not 
analytically integrable. The solution is to use numerical 
methods, namely Monte Carlo methods [14]. Monte Carlo 

methods are used widely for accurately approximating the 
evaluation of probability integrals. Quite often, risk 
problems such as the subject of this report are solvable only 
using Monte Carlo methods. 

The central issue to evaluating equations (7) using Monte 
Carlo methods is to obtain a large number of samples of γ, 
ηa, βa, ηb, and βb from the joint posterior uncertainty model 
in equation (7). There exist no statistical software packages 
with built-in samplers for the joint posterior density 
function of equation (7). The remedy is to use Markov 
Chain Monte Carlo (MCMC) methods to sample this 
posterior. MCMC methods allow full range sampling of 
arbitrary distributions of any dimension given the 
formulation of the joint density [15]. With sufficient 
MCMC sampling of the joint posterior in equation (7), it is 
possible to compute very accurate approximations for 
almost any measure or statistic of interest. 

3. VALIDATION  
Before using the approach presented in section 2 for the 
HU-25 AC generator data, it is prudent to validate the 
approach by using artificial data generated using known 
values of ηa, βa, ηb, and βb for various values of γ. 10,000 
failure and survivor data were developed each for five 
values of the mixture parameter γ (0.01, 0.25, 0.5, 0.75, and 
0.99) using known values of ηa, βa, ηb, and βb. Table 1 
contains the values of ηa, βa, ηb, and βb used for these five 
sets of validation data. 

Table 1:  Validation Model True Parameter Values 

Parameter Value 

ηa 800 

βa 0.7 

ηb 1500 

βb 3.7 

 

The values in Table 1 represent two distinct failure models. 
Figure 3 shows the failure densities produced by these two 
models. 
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Figure 3 – The two validation failure models, Weiba in 
RED and Weibb in BLUE, will present multiple modes 
for some values of the mixture parameter, and not for 

others. Note that the densities overlap appreciably, and 
that Weiba may present samples to the right of Weibb. 

Validation samples were generated using the following 
procedure. For each value of the mixture parameter γ, 
10,000 uniform samples are obtained. For each uniform 
sample: if its value is less than the value of γ, then tsamp is 
selected from Weiba; if not, then tsamp is selected from 
Weibb. If tsamp is less than t = 1,800, then it is collected as a 
failure datum; if not, it is collected as a survivor datum at 
t = 1,800. Note in figure 3 that this survivor cutoff at 
t = 1,800 converts appreciable numbers of samples from 
failures to survivors for both failure models. The numbers 
of validation samples generated for the two Weibull models 
for the five values of the mixture parameter γ are presented 
Table 2. 

Table 2:  Validation Sample Numbers 

γ 

Validation Data Samples Numbers 
Generated 

Weiba Weibb 

# tf # ts # tf # ts 

0.01 84 19 8463 1434 

0.25 2100 435 6432 1033 

0.5 4100 872 4334 694 

0.75 6274 1262 2101 363 

0.99 8170 1722 94 14 

 

In Table 2, the survivor data represent about 15% of the 
total data. Figures 4-8 provide the samples and sample 
densities for validation failures for γ = 0.01, 0.25, 0.5, 0.75, 
and 0.99 respectively. Note that the failure samples are in 
the rug beneath the histogram and density curve in each 
figure, and that there is a distinct cutoff at t = 1,800 where 
the survivor data are set. 

Figure 4 – The validation failure samples for γ = 0.01 
show only a single failure mode. 
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Figure 5 – Two failure modes are obvious in the 
validation failure samples for γ = 0.25. 

 

Figure 6 – Two failure modes are obvious in the 
validation failure samples for γ = 0.5. 

 

 

 

 

Figure 7 – It is diffucult to visually identify two failure 
modes in the validation failure samples for γ = 0.75. 

 

Figure 8 – The validation failure samples for γ = 0.99 
show only a single failure mode. 

Figures 5 and 6 (γ = 0.25 and γ = 0.5 respectively) show very 
strong indications of more than one failure mode. Figure 7 
(γ = 0.75) hardly suggests that there may be more than one 
failure mode. Figures 4 and 8 (γ = 0.01 and γ = 0.99 
respectively) do not in any way suggest that there may be 
multiple modes involved, which should not be surprising. 
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The procedure described in section 2 of this report was used 
to process each set of 10,000 failure and survivor validation 
data for the five values of γ. The Markov chains in each 
execution of the procedure were initialized to values of 
γ = 0.5, ηa = ηb = 1,192, and βa = βb = 1.5. By initializing at 
these values, the Markov Chains in the MCMC should only 
stabilize to multiple failure modes when the data upon 
which they are based contains different failure modes. For 
the validation data with γ = 0.01, the Markov chains did not 
ever stabilize for γ, ηa, or βa. For the validation data with 
γ = 0.99, the Markov chains did not ever stabilize for γ, ηb, 
or βb. These results are actually comforting. There were so 
few data generated for model Weiba when γ = 0.01, and for 
model Weibb when γ = 0.99, that stabilization of the Markov 
chains probably should not have been anticipated. As 
figures 4 and 8 demonstrate, the data for these rarely 
sampled models are not apparent, nor were they to the 
procedure. That the Markov chains did not stabilize when 
the data sampling densities showed no hint of multiple 
failure modes, instead of stabilizing on some phantom 
values, is a very good indication and validation that the 
procedure will not find failure modes not represented in the 
data. 

For the other sets of validation data, those with γ = 0.25, 0.5, 
and 0.75, the Markov chains stabilized for all parameters. 
Table 3 provides marginal sampling statistics for these 
results for all parameters. 

Table 3:  MCMC Sampling Results for Validation Data 
for γ = 0.25, γ = 0.5, and γ = 0.75. 

 
γ = 0.25 

Minimum Maximum Mean 
(True) 

σ 

γ 0.066 0.423 0.223 
(0.25) 

0.066 

ηa 118.6 1864.4 777.5 
(800) 

351.2 

βa 0.573 1.156 0.789 
(0.7) 

0.077 

ηb 1387.3 1593.4 1500.9 
(1500) 

28.9 

βb 2.822 4.892 3.638 
(3.7) 

0.295 

 γ = 0.5 

γ 0.267 0.720 0.528 
(0.5) 

0.090 

ηa 182.7 1223.7 747.1 
(800) 

218.6 

βa 0.579 0.922 0.707 
(0.7) 

0.043 

ηb 1360.4 1657.8 1507.4 
(1500) 

52.3 

βb 2.359 5.632 3.893 
(3.7) 

0.599 

 γ = 0.75 

γ 0.458 0.775 0.609 
(0.75) 

0.050 

ηa 216.7 800.0 391.9 
(800) 

64.1 

βa 0.650 0.902 0.757 
(0.7) 

0.034 

ηb 1333.7 1562.0 1454.9 
(1500) 

32.5 

βb 2.68 6.72 4.01 
(3.7) 

0.524 

 

For values of γ = 0.25 and γ = 0.5 in Table 3, the mean 
values of the parameter samples agreed very well with the 
values used to generate the validation data sets. For these 
values of γ, that multiple failure modes existed were very 
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obvious in the related figures 5 and 6. For γ = 0.75 in Table 
3, the mean for the γ samples was only within 20% of the 
value used to generate the validation data. Also for γ = 0.75 
in Table 3, the mean for the ηa samples was only within 
50% of the value used to generate the validation data. The 
means for the remaining parameter samples for γ = 0.75 in 
Table 3, for βa, ηb, and βb, all agreed reasonably well with 
the values used to generate the validation data. Recall from 
figure 7 however, that it was difficult to determine visually 
from the density of the failure data that multiple failure 
modes were in effect. The primary factor in this less than 
ideal estimate was due to truncation of the validation failure 
samples at tsamp = 1800 to create the survivor data. This 
transformed over 14% of the Weibb failure samples into 
survivor samples, in a high probability density region as is 
observed in figure 3. Despite this artifact, the marginal 
density of the γ samples obtained from the validation failure 
and survivor data generated when γ = 0.75 strongly detected 
that multiple failure modes existed in the data, as shown in 
figure 9. 

Figure 9 – The MCMC samples and sample density for γ 
based on the validation failure and survivor data set for 
γ = 0.75 reveals that despite the mean and mode not 

being very close to the true value, the sharpness of the 
MCMC sample density strongly suggests that multiple 

failure modes exist in the data. 

Had the MCMC samples in figure 9 been spread over a 
much larger region, and the sample density been broad, 
perhaps then there would be some doubt about detection of 
multiple failure modes in the validation failure and survivor 
data. 

4. DATA 
The HU-25 AC generator failure and survivor data are 
presented in Figure 10. 

Figure 10 – The failure data for the HU-25 AC 
generator are displayed in the color RED. The survivor 

data are displayed in the color BLUE. 

Visual inspection of the scatter of the failure data in figure 
10 reveals no obvious multiple modes of failure. 

5. RESULTS 
The procedure described in section 2 was applied to the 
HU-25 AC generator failure and survivor data described in 
section 4 to obtain 10,000 joint samples of γ, ηa, βa, ηb, and 
βb from the joint posterior uncertainty model as in equation 
(7). The Markov chains were initialized to values of γ = 0.5, 
ηa = ηb = 1,192, and βa = βb = 1.5, and all Markov Chains 
stabilized. Table 4 presents the statistics for the marginal 
MCMC samples of these parameters. 
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Table 4:  MCMC Sampling Statistics Obtained from the 
HU-25 AC Generator Data. 

 Minimum Maximum Mean σ 

γ 0.026 0.869 0.412 0.148 

ηa 0.7 3497.7 1106.1 987.0 

βa 0.033 0.574 0.284 0.068 

ηb 1547.2 4496.2 3052.0 491.4 

βb 0.439 5.919 2.099 0.909 

 

The sampling statistics in Table 4 were not as ideal as those 
in Table 3. The numbers of data used to were only 45 
failures and 45 survivors, not the 10,000 data represented 
by the sampling statistics in Table 3. Examining the 
marginal MCMC sample densities for each parameter is 
instructive. Figures 11-15 provide these samples and 
marginal sample densities for the parameters. 

Figure 11 – The marginal MCMC samples for γ are 
diffuse, but sharper than the statistics in Table 4 

suggests. 

Figure 11 reveals that there is a 90% probability, based on 
the HU-25 AC generator data, that 0.16 ≤ γ ≤ 0.66. The 
mode is at γ = 0.41. Though the samples are fairly diffuse, 

the sharpness of the peak presents strong evidence that two 
failure modes are in effect in the HU-25 AC generator data, 
and that the most likely ratio of failures observed between 
these two modes is 41%. 

Figure 12 – The marginal MCMC samples and sample 
density for ηa are relatively small. 

Figure 12 suggests that the critical life for Weiba is small. In 
figure 13, the rather diffuse sampling of figure 12 is much 
sharper for the failure mode MCMC samples. 
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Figure 13 – The marginal MCMC samples for βa are 
sharp and indicate a strong infant mortality failure mode 

for Weiba. 

 

Figure 14 – The marginal MCMC samples and sample 
density for ηb are relatively sharp compared with figure 

12. 

 

Figure 15 – The marginal MCMC samples and sample 
density for βb are not as sharp as those shown in figure 
13 for βa , yet indicate that the second failure mode is 

very unlikely to be infant mortality. 

From figure 15, there is a 91.5% probability based on the 
HU-25 AC generator data that the second failure mode is in 
early wearout. There is very little if any overlap for samples 
in figure 13 with those in figure 15, additional confirmation 
of two failure modes. 

By examining figures 11-15 together, the procedure 
described in section 2 applied to the small set of HU-25 AC 
generator data strongly suggests that two failure modes are 
in play. One of the failure modes is clearly infant mortality, 
and the other is early wearout. As can be seen clearly in 
figures 13 and 15, there is very little overlap between the 
MCMC samples of βa and βb. The fact that the Markov 
chains all stabilized, and that the Markov chains for ηa and 
ηb, and for βa and βb, initialized at the same respective 
values and stabilized in significantly different regions is 
further evidence of multiple failure modes. 

6. CONCLUSIONS 
There are a number of important conclusions to be drawn 
from the discussions in the previous sections.  

First and foremost, the model mixing two separate Weibull 
models can be used to detect and confirm multiple failure 
modes in a set of data that includes numerous survivor data. 
The HU-25 AC generator data set was almost 50% survivor 
data, where the validation data sets contained less than 20% 
survivor data.  

Second, the conditional inferential method presented in 
section 2 does not require any arbitrary segregation of data, 
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avoiding all of the questions concerning segregation of data, 
especially for segregation of survivor data. 

Third, the conditional inferential method used in 
conjunction with the mixture model both presented in 
section 2 can be used to effectively detect and confirm 
multiple failure modes in failure and survival data, but only 
if they exist. The method specifically fails to achieve 
stabilization of the Markov chains for some of the 
parameters if only a single failure mode exists in the data, or 
a single failure mode dramatically dominates the data. This 
limits spurious and costly engineering explorations into 
what could cause phantom failure modes and in how to 
develop preventative maintenance schedules to improve 
availability. 

Fourth, the method presented in section 2 successfully 
detected and confirmed multiple failure modes for the HU-
25 AC generator from a small set of data which had almost 
50% survivors. These failure modes were distinct, and quite 
different from those found via any data segregation process 
with reprocessing using a graphical inferential approach. 

Future investigations of the method presented in this report 
remain. The sensitivity of the ability of the method to 
reliably detect and confirm multiple failure modes with 
larger proportions of survivor data should be examined by 
exercising it on validation data sets with more survivors.  

Further investigations should be performed into how 
distinct and different the failure mode distributions must be 
for the method to reliably detect and confirm multiple 
failure modes. In this report, the validation data consisted of 
one infant mortality failure mode mixed with one early 
wearout failure mode. Could the method detect and confirm 
two distinct early wearout failure modes, or two distinct old 
age failure modes? This investigation can also be performed 
with the appropriate validation data sets.  

And, lastly, suppose a data set contained more than one 
failure mode. There is no reason that the method presented 
in section 2 cannot be expanded to mixtures of more than 
two models. It may be appropriate to investigate the 
application of reversible jump MCMC methods to compute 
probabilities based on the data that the data is represented 
by one, two, or more failure modes. For today’s complex 
aerospace systems comprised of many complex subsystems, 
this last investigation may be the most valuable of all.  

REFERENCES  
[1] Mark A. Powell, “Risk Assessment Sensitivities for Very 

Low Probability Events with Severe Consequences,” 
Proceedings from the 2010 IEEE Aerospace Conference, 
Big Sky, MT, March 5-12, 2010. 

[2] Reliasoft Corporation, “Life Data Analysis Reference,” 
Reliasoft Publishing, Tucson, Arizona, 1997. 

[3] Mark A. Powell, “Optimal Cost Preventative Maintenance 
Scheduling for High Reliability Aerospace Systems,” 
Proceedings from the 2010 IEEE Aerospace Conference, 
Big Sky, MT, March 5-12, 2010. 

[4] Wallodi Weibull, “A Statistical Distribution Function of 
Wide Applicability,” ASME Journal of Applied 
Mechanics, Transactions of the American Society Of 
Mechanical Engineers 73, 293-297, September 1951. 

[5] Wallodi Weibull, Discussion, ASME Journal of Applied 
Mechanics, Transactions of the American Society Of 
Mechanical Engineers, 233-234, June 1952. 

[6] Peter Congdon, Applied Bayesian Modelling, John Wiley 
& Sons Ltd., West Sussex, 2003. 

[7] Joseph G. Ibrahim, Ming-Hui Chen, and Debajyoti Sinha, 
Bayesian Survival Analysis, Springer Science+Business 
Media, Inc., New York, 2001. 

[8] D.J. Lunn, A. Thomas, N. Best, and D. Spiegelhalter, 
WinBUGS -- a Bayesian modelling framework: concepts, 
structure, and extensibility, Statistics and Computing, 10, 
325-337, 2000. 

[9] C. L. Smith, J. Knudsen, and T. Wood, Advanced 
SAPHIRE -- Modeling Methods for Probabilistic Risk 
Assessment via the Systems Analysis Program for Hands-
On Integrated Reliability Evaluations (SAPHIRE) 
Software, May 2009. 

[10] Harold Jeffreys, Theory of Probability. Oxford 
University Press, Oxford, 1939. 

[11] James O. Berger, Statistical Decision Theory and 
Bayesian Analysis, Springer-Verlag, New York, 1980. 

[12] D. S. Sivia, Data Analysis, A Bayesian Tutorial, Oxford 
University Press, Oxford, 1996. 

[13] Samuel A. Schmitt, Measuring Uncertainty, An 
Elementary Introduction to Bayesian Statistics, Addison-
Wesley Publishing Company, Inc., Philippines, 1969. 

[14] Christian P. Robert and George Casella, Monte Carlo 
Statistical Methods, Springer-Verlag, New York, 1999. 

 12



[15] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, 
Markov Chain Monte Carlo in Practice, Chapman & Hall, 
Boca Raton, 1996. 

BIOGRAPHY 
Mark Powell has practiced Systems 
Engineering for over 35 years in a 
wide range of technical 
environments including DoD, 
NASA, DOE, and commercial. 
More than 25 of those years have 
been in the aerospace arena. His 
roles in these environments have 
included project manager, 
engineering manager, chief systems 

engineer, and research scientist. His academic affiliations 
have included the University of Idaho, Stevens Institute of 
Technology, and the University of Houston, Clear Lake. 
Mr. Powell maintains an active engineering and 
management consulting practice throughout North America, 
Europe, and Asia. Beyond consulting, he is sought 
frequently as a symposium and conference speaker and for 
training, workshops, and tutorials on various topics in 
Systems Engineering, Project Management, and Risk 
Management. Mr. Powell is an active member of AIAA, 
Sigma Xi, the International Society for Bayesian Analysis, 
and the International Council on Systems Engineering, 
where he has served as chair of the Risk Management 
Working Group, and as Assistant Director for Systems 
Engineering Processes. 

 

 13



 

 14


